澳门金沙会娱乐城官网-澳门金沙网上娱乐合法_百家乐什么方法容易赢_全讯网sp (中国)·官方网站

新聞中心

位置: 網站首頁 > 新聞中心 > 媒體西大 > 正文

Crews in China Complete World's Longest Steel-Reinforced Concrete Arch Bridge

作者:Aileen Cho     編輯:賈琦艷     來源:Engineering News-Record   發表于: 2024-08-09 13:09  點擊:

https://www.enr.com/articles/58835-crews-in-china-complete-worlds-longest-steel-reinforced-concrete-arch-bridge


Longtan Bridge currently holds the long-span record for bridges of its type.

Photo courtesy of Man-Chung Tang/TYLI



Crews in Guangxi, China are wrapping up punch-list items and dismantling the project site of what is now the world’s longest steel-reinforced concrete arch bridge. The Tian’e Longtan Bridge, with a 600-meter main span, beats out the Third PingNan Bridge by 25 m.

Contractor Guangxi Road and Bridge Engineering Group Co., Ltd. (GRBG) began building the approximately 2,500-m-long bridge in 2020 as part of the Nandan-to-Tian'e Expressway through the mountainous region of Tian'e County.

The bridge crosses a reservoir over the Hongshuihe River that is up to 900 m wide and approximately 130 m deep, according to a report by the contractor provided to ENR. The bridge deck rises 140 m over the reservoir.

The box-ribbed, steel-tubed arch structure, supported by 13 horizontal struts, carries four lanes of traffic. Crews utilized a cantilever construction method using stay cables without any falsework support—a method developed by bridge designer Jielian Zheng in 1968. According to a technical paper he wrote at Guangxi University, China has more than 300 arch bridges built this way, Zheng said. The T-shaped prestressed concrete girders have spans of 40 m.

The five longest arch bridges in the world all are located in China, notes Man-Chung Tang, chairman of T.Y. Lin International’s China branch, and an advisor on the project.

“An arch can support itself only after the entire arch rib is complete,” Tang says. “In the old days, the ribs of an arch bridge had to be completely supported by shuttering or formwork during construction before the entire arch rib was fully completed and the abutments were poured. This limited the spans of the arches we could build because the formwork would otherwise be too expensive and less stable. Very long-span arch bridges became possible only after Prof. Zheng developed this cable-stayed method for arch construction. In addition, he developed methods to ascertain that the concrete inside the steel tubes be fully attached to the steel shell.”

Evolving technologies, such as vacuum-assisted graded pumping, non-shrinkage concrete and instantaneous stress load regulation of arch rings also enabled the 600-m span, according to the contractor.

The bridge’s steel “skeleton” is 8,200 tons and divided into 44 segments. The biggest segment is 23.35 m long, 9.91 m high and 5.2 m wide. “After careful search, we found an abandoned soil disposal site, approximately 60,000 cu meters in size,” that became a steel fabrication plant, according to the contractor. “Moreover, it is located near the river, making it convenient to hoist these segments onto large ships.”

Access to the site was a challenge. “In terms of land transportation, there is a connection to a secondary road 16 km away via rural paths on one bank,” according to the contractor. “On the other bank, the rural paths that connect to the nearest secondary road are approximately 35 km away, with an elevation difference of about 100 m, making it practically unusable.”

Crews upgraded the paths on the first bank and built docks on both banks to accommodate material and equipment transportation.

In his paper, Zheng says technologies must continue to advance to increase arch span lengths. They include the need to “improve the fatigue resistance of welded joints; to study a more convenient connection between hanging sections … a new calculation method of section-bearing capacity and [a] rapid construction method are studied.”

He added, “At present, we have demonstrated the feasibility of the concrete-filled steel tube arch bridge with a net span of 700 m, and look forward to the concrete arch bridge with a span of more than 700 m as soon as possible.”

KEYWORDS: Arch bridgesbridge constructionJielian ZhengLongtan Bridge

 

編輯:賈琦艷

上一條:賦能新質生產力發展?第二十一屆全國機械工程學院院長/系主任聯席會議在南寧召開

下一條:全國機械工程學院院長/系主任聚邕交流


百家乐官网新注册送彩金| 新东方百家乐官网娱乐城| 百家乐官网筹码500| 百家乐二人视频麻将| 大发888官方备用网址| 线上百家乐官网的玩法技巧和规则 | 百家乐官网8点直赢| 网络棋牌游戏平台| 太阳城百家乐币| 百家乐官网对打反水| 大发888bjl| 加州百家乐娱乐城| 百家乐官网开户送彩金28| 威尼斯人娱乐城筹码| 12倍百家乐秘籍| 百家乐官网娱乐用品| a8娱乐城开户| 百家乐全部规则| 百家乐庄家胜率| 百家乐官网赌场策略论坛| 宝马会百家乐的玩法技巧和规则| 澳门百家乐官网必胜看| 百家乐官网是骗人的么| 青鹏棋牌官网| 怎么赢百家乐的玩法技巧和规则 | 芝加哥百家乐官网的玩法技巧和规则| 澳门玩大小| 太原百家乐的玩法技巧和规则| 百家乐如何取胜| 百家乐官网论坛博彩啦| 皇冠百家乐官网代理网| 大发888娱乐总代理qq| 百家乐游戏方法| 百家乐有没有稳赢| 太阳神百家乐官网的玩法技巧和规则| 大发888体育在线| 百家乐赌术揭秘| 实战百家乐官网的玩法技巧和规则 | 威尼斯人娱乐场网站| 百家乐网站可信吗| 易胜博百家乐作弊|